

# Stirring Images: Fear, Not Happiness or Arousal, Makes Art More Sublime

Kendall J. Eskine  
Loyola University New Orleans

Natalie A. Kacinik  
The Graduate Center and Brooklyn College,  
City University of New York

Jesse J. Prinz  
The Graduate Center, City University of New York

Which emotions underlie our positive experiences of art? Although recent evidence from neuroscience suggests that emotions play a critical role in art perception, no research to date has explored the extent to which specific emotional states affect aesthetic experiences or whether general physiological arousal is sufficient. Participants were assigned to one of five conditions—sitting normally, engaging in 15 or 30 jumping jacks, or viewing a happy or scary video—prior to rating abstract works of art. Only the fear condition resulted in significantly more positive judgments about the art. These striking findings provide the first evidence that fear uniquely inspires positively valenced aesthetic judgments. The results are discussed in the context of embodied cognition.

**Keywords:** aesthetics, embodied cognition, emotion, abstract art, fear

Indeed terror is in all cases whatsoever, either more openly or latently, the ruling principle of the sublime. (Burke, 1757/2008, p. 54)

Consumers spend billions of dollars on the arts every year, and aesthetic decisions pervade human life. Introspectively, emotions seem to be an essential part of aesthetic experiences, and neuroscience research has shown that emotions play an important role in making aesthetic judgments (Chatterjee, 2011; Cinzia & Vittorio, 2009; Kuchinke, Trapp, Jacobs, & Leder, 2009). However, relatively little is known about which specific emotions arise when we view art, and whether emotions contribute to our positive aesthetic judgments or simply follow from them. Although a range of emotions, including pride, disgust, and confusion, have recently been discussed in relation to aesthetics (Silvia, 2009), no research to date has directly investigated their effects. Furthermore, because emotions are typically accompanied by increased states of physiological arousal, it is unclear whether simply feeling physiologically excited is sufficient for a positive aesthetic experience or whether a corresponding emotional state is necessary. In this study, we investigated the emotional basis of sublime experiences (i.e., the experience of perceiving something that evokes feelings

of astonishment and amazement) in an effort to determine which emotions underlie awe-inspiring experiences when viewing works of art.

Neuroimaging research has revealed that aesthetic judgments are accompanied by significant activity in orbitofrontal cortex and the anterior cingulate gyrus (Kawabata & Zeki, 2004); the left cingulate sulcus, bilateral occipital gyri, bilateral fusiform gyri, and right caudate nucleus (Vartanian & Goel, 2004); as well as the posterior cingulate, frontomedian cortex, and the temporoparietal junction (Jacobsen, Schubotz, Höfel, & Cramon, 2006). Because these regions have been implicated in emotion processing, they support the proposition that emotions are important to aesthetic judgments (Freedberg & Gallese, 2007). Yet these findings do not indicate whether emotional states are fundamental to making aesthetic judgments or simply the consequence of those judgments.

One possibility is that artwork is viewed as sublime when it causes general physiological arousal. However, Edmund Burke (1757/2008) advanced the fascinating alternative that our sense of the sublime depends on the specific emotion of fear. According to Burke, this conventionally negative emotion paradoxically underwrites our positive appraisals of art. This claim appears to have never been tested.

At first glance, positively valenced emotions like happiness might seem like better candidates. Therefore, the present study tested the effects of fear, happiness, and general physiological arousal on participants' sublime feelings as they rated abstract art. The primary goal was to determine whether aesthetic judgments are informed by a specific emotion or by general physiological arousal. The larger objective, however, was to shed light on the power of visual art and the underpinnings of aesthetic experiences. Art is central to human life, and it is a mystery why something that does not seem essential for survival would capture our interest so intensely and become so ubiquitous in culture. The link between a

---

This article was published Online First February 6, 2012.

Kendall J. Eskine, Department of Psychological Sciences, Loyola University New Orleans; Natalie A. Kacinik, Department of Psychology, The Graduate Center and Brooklyn College, City University of New York; Jesse J. Prinz, Department of Philosophy, The Graduate Center, City University of New York.

We thank Thomas McAusland and Igor Beytelman for their help with data collection. We also thank Aaron Kozbelt, Margaret-Ellen Pipe, Glen Hass, and Tony Ro and his lab for their helpful suggestions.

Correspondence concerning this article should be addressed to Kendall J. Eskine, Department of Psychological Sciences, Box 194, Loyola University New Orleans, 6363 Saint Charles Avenue, New Orleans, LA 70118. E-mail: [kjeskine@loyno.edu](mailto:kjeskine@loyno.edu)

specific emotional state like fear and sublime experiences may point toward an answer.

### Method

Eighty-five undergraduate students (47 women, 37 men) from Brooklyn College participated in this study for course credit; they were randomly assigned to one of five conditions (fear, happiness, high physiological arousal, low physiological arousal, or control) in a between-subjects design ( $n = 17$  per condition). Fear<sup>1</sup> and happiness<sup>2</sup> were induced using a brief video depicting a scary or happy event, respectively. Although these videos have not been validated or used in previous research, they were chosen from YouTube on the basis of their similar duration (14 s after some editing), climatic emotive moment, which occurred in the last 3 s of each clip, and apparent ability to induce the desired emotions. This was confirmed after the critical part of the experiment by asking participants to rate the extent to which they perceived their video to be scary or happy.

High and low physiological arousal were induced through 30 or 15 jumping jacks, respectively, whereas control participants were not assigned to any video or activity prior to rating the art. They were told that the study was testing how people perceive art under various distractions. Participants were then instructed according to their assigned condition (e.g., video clip, jumping jacks, or sitting normally), and immediately shown the same four paintings (in counterbalanced order). As an initial attempt to investigate Burke's hypothesis, we chose simple geometric abstract pieces from the artist El Lissitsky to avoid variability in conceptual and emotional content from different artists and genres.

Each painting was presented for approximately 30 s on a computer screen as participants rated it on 10 items assessing how "inspiring," "stimulating," "dull," "exciting," "moving," "boring," "uninteresting," "rousing/stirring," "imposing," and "forgetful" it was on a 5-point scale from 1 (*completely disagree*) to 5 (*completely agree*). These dimensions were chosen because they convey components of sublime experiences, as conceptualized by Burke. Participants then filled out some manipulation checks using 5-point scales to confirm their subjectively felt physiological arousal from 1 (*much less physiologically excited than normal*) to 5 (*much more physiologically excited than normal*) and rated how scared or happy they felt after the corresponding video from 1 (*not at all scared/happy*) to 5 (*very scared/happy*). Finally, participants answered some demographic questions before they were debriefed.

### Results

Participants' ratings of their emotions confirmed that they were actually scared ( $M = 4.53$ ,  $SD = 0.63$ ) or happy ( $M = 4.24$ ,  $SD = 0.75$ ) after those videos, respectively, indicating that the videos were successful at inducing the desired emotion. It is also important to note that the emotional strength between the groups did not differ,  $t(32) = 1.166$ ,  $p = .252$ , indicating that both emotions were induced to the same degree. With respect to their physiological arousal, a one-way analysis of variance (ANOVA) revealed a significant effect in arousal ratings depending on condition,  $F(4, 80) = 12.821$ ,  $p < .001$ . A follow-up Tukey's honestly significant difference (HSD) test showed that the control condition ( $M = 2.29$ ,  $SD = 0.92$ ) significantly differed from the high physiological

arousal condition ( $M = 3.71$ ,  $SD = 0.78$ ), fear condition ( $M = 3.76$ ,  $SD = 0.90$ ), and the happiness condition ( $M = 3.71$ ,  $SD = 0.92$ ), but not from the low physiological arousal condition ( $M = 2.47$ ,  $SD = 0.72$ ). The low and high physiological arousal conditions differed significantly, confirming that the arousal manipulation worked. Of note, the high physiological arousal, fear, and happiness conditions did not differ significantly, indicating that any differences in sublime feelings between those three conditions cannot be explained by variations in physiological arousal.

Due to the similarity of the artwork, each participant's ratings for all four paintings were averaged into a single "sublime score." Items like "boring" and "uninteresting" were reversed scored so that all reflected positively valenced judgments. A principal components factor analysis with no rotations was conducted to determine whether the 10 dimensions measured the same "sublime" construct. Nine of the 10 items loaded onto one factor, whereas "imposing" loaded onto its own separate factor, and "imposing" scores were therefore removed from subsequent analyses (see Table 1). The remaining nine items were analyzed for reliability, resulting in a high Cronbach's alpha coefficient of .956. The one-way ANOVA of these sublime scores was significant,  $F(4, 80) = 5.075$ ,  $p = .001$ . A follow-up Tukey's HSD test indicated that the fear condition ( $M = 3.74$ ,  $SD = 0.96$ ) resulted in significantly higher sublime scores than all other conditions, which did not differ significantly from each other (see Table 2).

Together, these results suggest that fear might play a special role in the sublime experience. However, physiological arousal was also found to generally correlate with sublime scores ( $r = .322$ ,  $p < .01$ ), suggesting that arousal is still involved in this process. When participants' physiological arousal and fear ratings were treated as predictors of sublime ratings, a multiple regression revealed a marginally significant effect of physiological arousal consistent with the above finding,  $t(14) = 1.807$ ,  $p = .092$ ,  $\beta = .432$ . However, fear was not found to significantly predict sublime ratings,  $t < 1$ . We believe that this finding is due to the similarity of the ratings given by participants in the fear condition, thereby limiting the variance available for a regression model.

### Discussion

The present experiment was designed to disentangle the effects of emotion and physiological arousal in order to determine their role in aesthetic experiences. Fear was the only factor found to significantly increase sublime feelings. Because higher sublime scores were also significantly associated with greater physiological arousal, arousal does generally contribute to aesthetic experiences. Overall, however, Burke's original hypothesis was supported.

But why fear? One potential explanation for the apparently unique role of fear is that it motivates organisms in an evolutionarily significant way. At its core, fear is an emotional mechanism

<sup>1</sup> The fear video showed a car traveling along a scenic route until the climatic emotive moment when a zombie-like face appears abruptly on screen and screams (the raw, unedited video can be found at <http://www.youtube.com/watch?v=tHEwaHNnw0w>).

<sup>2</sup> The happy video showed an infant crawling toward a dog until the climatic emotive moment when the dog begins licking the infant's face and she begins laughing and cooing (the raw, unedited video can be found at <http://www.youtube.com/watch?v=41BvNhzl83Y>).

Table 1  
Factor Loadings Based on a Principle Components Analysis for the 10 Sublime Scale Items

| Dimensions    | Component 1 | Component 2 |
|---------------|-------------|-------------|
| Inspiring     | .815        | .145        |
| Stimulating   | .783        | -.091       |
| Dull          | .717        | -.215       |
| Exciting      | .822        | .136        |
| Moving        | .716        | .279        |
| Boring        | .868        | -.300       |
| Uninteresting | .868        | -.300       |
| Rousing       | .807        | .243        |
| Imposing*     | .446        | .767        |
| Forgetful     | .701        | -.316       |

Note. The dull, boring, uninteresting, and forgetful dimensions were reversed scored so that all items indicate positively valenced judgments.

\* The imposing dimension was the only rating item not highly loaded on Component 1.

that increases survival chances by motivating fight, flight, or freezing responses to threatening situations (Panksepp, 1998). Fear seizes one's attention, halts current plans, and increases vigilance in a threatening situation. Indeed, Burke described the sublime experience as "that state of the soul in which all its motions are suspended . . . so entirely filled with its object (1757/2008, p. 52)." The capacity for a work of art to grab our interest and attention, to remove us from daily life, may stem from its ability to trigger our evolved mechanisms for coping with danger. Art is not typically described as scary, but it can be surprising, elicit goose bumps, and inspire awe. Like discovering a grand vista in nature, artwork presents new horizons that pose challenges as well as opportunities.

Recent evidence from neuroscience supports this view (Brown, Geo, Tisdelle, Eichhoff, & Lotti, 2011). A meta-analysis of 93 neuroimaging studies across four sensory modalities (visual, auditory, gustatory, and olfactory) investigating participants' positively valenced aesthetic judgments found that the right anterior insula showed the greatest activity during these appraisals. This was surprising because that region is typically discussed in terms of its processing of negative-valenced emotions like disgust. The insula has also been directly implicated in fear (Schienle et al., 2002). Activity in the left anterior cingulate and left dorsolateral prefrontal cortex also appears to be correlated with *both* aesthetic preference and the processing of fear (Pissiota et al., 2003; Phillips et al., 1998). The present study confirms and extends these correlational findings by providing the first experimental evidence that inducing different emotional states, and dissociating them from general physiological arousal, differentially affects one's percep-

tion of art. This experiment provides evidence that emotions can impact aesthetic judgments, but provides no indication about the extent to which emotions also accompany (or follow from) aesthetic judgments. Future research will be necessary to determine the precise nature of this complex relationship, by examining whether similar results are obtained when inducing fear by other means and with other types of art.

Pending the outcome of those investigations, the present finding of a link between fear and the sublime may lead to insights into why people like art. Some authors have argued that the aesthetic sense is an adaptation associated with sexual selection (Dutton, 2009), but if so, we would expect pleasure to guide preference. Our data suggest that art's allure may instead be a byproduct of one's tendency to be alarmed by such environmental features as novelty, ambiguity, and the fantastic. Artists may be tapping into this natural sense when their work takes people's breath away. Other emotions (like confusion or contempt) may also contribute to sublime experiences. Future research should explore the effects of different emotions in greater depth, and assess emotional reactions with physiological measures.

The connection between embodied responses to fear and sublime experiences provides evidence that emotional states might influence the perception of art even more fundamentally than previously thought (Gombrich, 1960). Some theorists, like E. H. Gombrich, have argued that art is perceived in a top-down manner, specifically that appreciating art is a higher-order cognition that draws from one's beliefs, concepts, and experiences; on this approach, emotional and other embodied states play little role in art perception. On the other hand, there is a growing body of evidence that embodied emotions are critical for grounding cognition (Barsalou, 2008; Damasio, 1994; Haidt, 2001; Schwarz & Clore, 1998). Indeed, recent research indicates that aesthetic experiences result from the complex interaction between *both* top-down emotional orientations and bottom-up perceptual processes, like feature detection (Cupchik, Vartanian, Crawley, & Mikulis, 2009). It is particularly worth noting that the anterior insula was again found to be correlated with aesthetic judgments.

Although the exact nature of the top-down–bottom-up interaction will have to be specified by future research, the present findings help confirm the importance of studying specific emotions with respect to how feelings influence various judgments. They also point to a surprising explanation of why art can be so captivating. Recently, considerable effort has been devoted to studying morality with the tools of science (Chapman, Kim, Susskind, & Anderson, 2009; Eskine, Kacinik, & Prinz, 2011; Haidt, 2007; Inbar, Pizarro, & Bloom, 2009; Schnall, Haidt, Clore, & Jordan, 2008). Art plays a comparably central role in human life,

Table 2  
Participants' Mean Ratings of Art in Each Condition

|        | Condition   |                           |                            |             |             |
|--------|-------------|---------------------------|----------------------------|-------------|-------------|
|        | Control     | Low physiological arousal | High physiological arousal | Happiness   | Fear        |
| Rating | 2.71 (0.55) | 2.92 (0.70)               | 2.88 (0.76)                | 2.87 (0.69) | 3.74 (0.96) |

Note. Higher values indicate more positive impressions and stronger interest in the art. Standard deviations are in parentheses.

and it can be argued that aesthetic values deserve similar scientific scrutiny.

## References

Barsalou, L. W. (2008). Grounded cognition. *Annual Review of Psychology*, 59, 617–645. doi:10.1146/annurev.psych.59.103006.093639

Brown, S., Gao, X., Tisdelle, L., Eickhoff, S. B., & Liotti, M. (2011). Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. *NeuroImage*, 58, 250–258. doi:10.1016/j.neuroimage.2011.06.012

Burke, E. (2008). *A philosophical inquiry into the origin of our ideas of the sublime and beautiful* (A. Philips, Ed.). New York, NY: Oxford University Press. (Original work published 1757)

Chapman, H. A., Kim, D. A., Susskind, J. M., & Anderson, A. K. (2009). In bad taste: Evidence for the oral origins of moral disgust. *Science*, 323, 1222–1226. doi:10.1126/science.1165565

Chatterjee, A. (2011). Neuroaesthetics: A coming of age story. *Journal of Cognitive Neuroscience*, 23, 53–62. doi:10.1162/jocn.2010.21457

Cinzia, D. D., & Vittorio, G. (2009). Neuroaesthetics: A review. *Current Opinion in Neurobiology*, 19, 682–687. doi:10.1016/j.conb.2009.09.001

Cupchik, G. C., Vartanian, O., Crawley, A., & Mikulis, D. J. (2009). Viewing artworks: Contributions of cognitive control and perceptual facilitation to aesthetic experience. *Brain and Cognition*, 70, 84–91. doi:10.1016/j.bandc.2009.01.003

Damasio, A. R. (1994). *Descartes' error: Emotion, reason, and the human brain*. New York, NY: Grosset/Putnam.

Dutton, D. (2009). *The art instinct: Beauty, pleasure, and human evolution*. New York, NY: Bloomsbury Press.

Eskine, K. J., Kacinik, N. A., & Prinz, J. J. (2011). A bad taste in the mouth: Gustatory disgust influences moral judgment. *Psychological Science*, 22, 295–299. doi:10.1177/0956797611398497

Freedberg, D., & Gallese, V. (2007). Motion, emotion, and empathy in esthetic experience. *Trends in Cognitive Science*, 11, 197–203. doi:10.1016/j.tics.2007.02.003

Gombrich, E. H. (1960). *Art and illusion*. Princeton, NJ: Princeton University Press.

Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. *Psychological Review*, 108, 814–834. doi:10.1037/0033-295X.108.4.814

Haidt, J. (2007). The new synthesis in moral psychology. *Science*, 316, 998–1002. doi:10.1126/science.1137651

Inbar, Y., Pizarro, D. A., & Bloom, P. (2009). Conservatives are more easily disgusted than liberals. *Cognition & Emotion*, 23, 714–725. doi:10.1080/02699930802110007

Jacobsen, T., Schubotz, R. I., Höfel, L., & Cramon, D. Y. V. (2006). Brain correlates of aesthetic judgment of beauty. *NeuroImage*, 29, 276–285. doi:10.1016/j.neuroimage.2005.07.010

Kawabata, H., & Zeki, S. (2004). Neural correlates of beauty. *Journal of Neurophysiology*, 91, 1699–1705. doi:10.1152/jn.00696.2003

Kuchinke, L., Trapp, S., Jacobs, A. M., & Leder, H. (2009). Pupillary responses in art appreciation: Effects of aesthetic emotions. *Psychology of Aesthetics, Creativity, and the Arts*, 3, 156–163. doi:10.1037/a0014464

Panksepp, J. (1998). *Affective neuroscience: The foundations of human and animal emotions*. New York, NY: Oxford University Press.

Phillips, M. L., Young, A. W., Scott, S. K., Calder, A. J., Andrew, C., Giampietro, V., ... Gray, J. A. (1998). Neural responses to facial and vocal expressions of fear and disgust. *Proceedings of the Royal Society B Biological Sciences*, 265, 1809–1817. doi:10.1098/rspb.1998.0506

Pissiota, A., Frans, Ö., Michelgård, Å., Appel, L., Långström, B., Flaten, M. A., & Fredrikson, M. (2003). Amygdala and anterior cingulated cortex activation during affective startle modulation: A PET study of fear. *European Journal of Neuroscience*, 18, 1325–1331. doi:10.1046/j.1460-9568.2003.02855.x

Schienle, A., Stark, R., Walter, B., Blecker, C., Ott, U., Sammer, G., & Vaitl, D. (2002). The insula is not specifically involved in disgust processing: An fMRI study. *NeuroReport: For Rapid Communication of Neuroscience Research*, 13, 2023–2026. doi:10.1097/00001756-200211150-00006

Schnall, S., Haidt, J., Clore, G., & Jordan, A. (2008). Disgust as embodied moral judgment. *Personality and Social Psychology Bulletin*, 34, 1096–1109. doi:10.1177/0146167208317771

Schwarz, N., & Clore, G. L. (1998). How do I feel about it? Informative functions of affective states. In K. Fiedler & J. Forgas (Eds.), *Affect, cognition and social behavior* (pp. 44–62). Toronto, Ontario: Hogrefe International.

Silvia, P. J. (2009). Looking past pleasure: Anger, confusion, disgust, pride, surprise, and other unusual aesthetic emotions. *Psychology of Aesthetics, Creativity, and the Arts*, 3(1), 48–51. doi:10.1037/a0014632

Vartanian, O., & Goel, V. (2004). Emotion pathways in the brain mediate aesthetic preference. *Bulletin of Psychology and Arts*, 5, 37–42.

Received November 17, 2011

Revision received January 5, 2012

Accepted January 6, 2012 ■